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Nonlinear Adaptive Flight Control Using Backstepping
and Neural Networks Controller

Taeyoung Lee* and Youdan Kim
Seoul National University, Seoul 151-742, Republic of Korea

A nonlinear adaptive flight control system is proposed using a backstepping and neural networks controller. The
backstepping controller is used to stabilize all state variables simultaneously without the two-timescale assumption
that separates the fast dynamics, involving the angular rates of the aircraft, from the slow dynamics, which includes
angle of attack, sideslip angle, and bank angle. It is assumed that the aerodynamic coefficients include uncertainty,
and an adaptive controller based on neural networks is used to compensate for the effect of the aerodynamic
modeling error. Under mild assumptions on the aerodynamic uncertainties and nonlinearities, it is shown by the
Lyapunov stability theorem that the tracking errors and the weights of neural networks exponentially converge to
a compact set. Finally, nonlinear six-degree-of-freedom simulation results for an F-16 aircraft model are presented
to demonstrate the effectiveness of the proposed control law.

Nomenclature

= aerodynamic force about the body-fixed frame
= moment of inertia

aerodynamic rolling, pitching, yawing moment
roll, pitch, yaw rate about the body-fixed frame
dynamic pressure

thrust

velocity

= angle of attack, sideslip angle

elevator, aileron, rudder angle

roll, pitch, yaw angle
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I. Introduction

EEDBACK linearization is a theoretically established and

widely used method in controlling nonlinear systems. Exact
input-output linearization is often used to control specific output
variable sets in nonlinear flight control problems.! Unfortunately,
this direct application of feedback linearization requires the second
or third derivatives of uncertain aerodynamic coefficients and does
not guarantee internal stability for nonminimum phase systems.

Another approach to designing flight control laws with feedback
linearization is to separate the flight dynamics into fast and slow
dynamics by using timescale properties>* This method allows the
controller design process to be performed without state transforma-
tion, because each separated subsystem is square: The number of
controlinputsis equal to the number of states. The design process of
this method can be divided into two steps. In the outer loop, the con-
troller for the slow states «, 8, and ¢ is designedto facilitatetracking
of the given commands by assuming that the fast states p, g, and r
are control inputs, which achieve their commanded values instanta-
neously. With the slow states controller designed in the outer loop,
a separated inner-loop controller is designed to make the fast states
D, q, and r follow the outer loop’s control input trajectories using
the real control inputs: aileron, rudder, and elevator.

This method can be justified only if there is sufficient timescale
separation between the inner- and outer-loop dynamics because the
faststates p, g, and r are used as controlinputs in the outer-loopsys-
tem. Hence, the states p, ¢, and r in the inner loop should be much
faster than the states «, 8, and ¢ in the outer loop. The stability of
this timescale separation approach may be analyzed by the singular
perturbation theory. However, in most nonlinear flight control re-
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search, the gain of the inner-loop controlleris set much larger than
that of the outer-loop controller, and it is assumed that the aircraft
dynamics satisfies this property. This, therefore, does not guarantee
closed-loop stability.

Schumacher and Khargonekar analyzed theoretically the stabil-
ity of the flight control system with the two-timescale separation
assumption.* Using the Lyapunov theory, they determined the min-
imal inner-loop gain guaranteeing closed-loop stability. However,
this approachis so complicated and conservativethat the calculated
value of the minimal inner-loop gain is too large to be appliedin the
flight controller. It may excite unmodeled dynamics or saturate the
control inputs and, therefore, cause robustness problems.

Anotherdifficulty related to the applicationof feedbacklineariza-
tion to a flight control system is that a complete and accurate aircraft
dynamic model including aerodynamic coefficients is required. It
is difficult to identify accurately aerodynamic coefficients because
they are nonlinear functions of several physical variables. Gain
scheduling with a linear H,., design is a traditional approach to
overcome this problem; however, it can guarantee the desired per-
formance only when conditions comprise a small perturbation and
slow variance.

Neural networks have been proposedrecently as an adaptive con-
troller for nonlinearsystems > By the use of their universal approx-
imation capability, the adaptive controller based on neural networks
can be designed without significant prior knowledge of the system
dynamics. In flight control problems, the applications of adaptive
neural networks can be found in Refs. 7 and 8. Single-layer neu-
ral networks are used to compensate for unknown dynamics’ and
inversion error?

This paper proposes a backstepping and neural networks con-
troller for a nonlinear flight dynamic system and analyzes the sta-
bility of the proposedcontrol systemusing the Lyapunovtheory. The
controlleris designed by using the backstepping approach’ with the
assumption that all aerodynamic coefficients are fully understood.
The proposed method also intermediately uses the fast states p, ¢,
and r as control inputs. However, it considers the transientresponses
of the fast states and does not require the two-timescale assumption.
Therefore, it is not necessary to make the controller gainimpractica-
bly large to guarantee the closed-loopstability because the timescale
separation assumption is not used in the design or analysis.

The effects of the modeling error in some aerodynamic coef-
ficients are also considered and are compensated for by multilayer
neural networks. The parameters of the neural networks are adjusted
to offset the term generated by the modeling error. The adaptive con-
troller based on multilayer neural networks is an extension of the
work described in Ref. 6. In that paper, only the state variables can
be used as input for the neural networks. This paper generalizes it
by adding a robust control term, which allows the use of neural net-
work inputs thatdo notbelong to the states. The main contributionof
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this paper is that the stability of nonlinear flight dynamics is proven
mathematically without unrealisticrestrictions.

This paper is organized as follows. A nonlinear flight model is
described in Sec. II. In Sec. III, the backstepping controller is de-
signed when modeling error does not exist. The neural networks
adaptive controller is then designed in Sec. IV when aerodynamic
modeling error is present. Finally, a numerical simulation of a six-
degree-of-freedom F-16 aircraft model is performed to verify the
effectiveness of the proposed algorithmin Sec. V.

II. Problem Definition

This paper presents a controller for a nonlinear aircraft. The task
of the controller is to track the commands of «, 8, and ¢ when
aerodynamic model uncertainties exist.

The body-fixed axes, nonlinearequations of motion for an aircraft
over a flat Earth are given by!°

- cosa cos f sin 8 sina cos 8
V=—————[T+F]+ [Fy] + [F.]
+ g[—cosa cos B sinf + sin B sin ¢ cos 6
+ sina cos B cos¢ cosO] (1)
. . sin o
o = —cosatan Bp + g — sinw tan fr — [T + F]
mV cos f8
2 £ —[sinasino+ peosd] ()
. sina sin 6+ cosa cos ¢ cos
mVcos ° VcospB
. . cosa sin B cos B
B =sinap —cosar — ——— [T + F, |+ ——F,
mV mV
sina sin B g . . .
— ———F, 4+ —[cosa sin B sinf + cos B cos 6 sin ¢
mV |4
— sina sin B cos¢ cos 0] 3)
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p=hLpg+Lgr+ LL+ LN )
G =Ispr—Ig(p> —r*) + LM (5)
F=—Laqr+ Iypg + I,L + I,N 6)
é = p +tan6(sin pg + cos ¢r) (7)
6 = cos¢q — sinpr (8)
. sin + cos ¢r
= $q ¢ ©)
cos6
where the moments of inertia I;, i = 1,2,...,9, are defined as
follows:
I Iz(lz_ly)+1)31 Ixz(lx_1y+lz)
L1z TLL-12
L= Iz I = IX: I _IZ_IX I _Ixz
-1z trnr-1z T T
1 IX(IX_Iv)—}_IXZ» IX
I =—, g = ——————=£ ly=—
I I —12 I —12

Definitions of state and control variables, forces,and moments in the
precedingequationsare describedin the Nomenclature.Itis assumed
that the aerodynamicforcesand moments are expressedas functions
of angle of attack, sideslip angle, angular rates, and control surface
deflection.!! For example, F, and L are expressed as follows:

F. = [Ci(@) + C,,, (@8, + (€q/2V)C,, (@) ]G S
L =[Ci(a, B)+ Cy, (@, B)S, + Cyy, (e, B)8, + (bp/2V)Cy, (@)

+(br/2V)C, (@) ]G Sb

Substituting the aerodynamic coefficients into the flight dynamic
equations yields

a —(sina/cos B)[T + C.(a)gS]+ (cosa/cos B)C (x)gS —cosa tan 8 1 —sinatanf | | p
B | =— | —cosasin B[T + C, ()7 S]+ cos BC,(B)gS — sina sin BC,(a, B)gS |+ sin o 0 —cosa q
é 0 1 singtand cos¢tand r
S 0 —(sina/cos B)Cy, (a)C + (cosa /cos B)C., (ar)c 0 [ p
+ Z—m cos BC,, ()b —cosa sin BC,, (a)¢ — sina sin BC; (a)C cos BCy, ()b || g
0 0 0 |7
—(sina/cos B)C,;, (@) + (cosa/cos B)C., (a, B) 0 0 T8,
Ew —cosa sin BC,; (@) — sina sin BC;, (a, B) cos BC,, (B) cosBCy, (B) #
" 0 0 o Jls
(1/cos B)(sinw sin @ + cos cos¢ cos )
+% cosa sin Bsinf + cos B cos6 sin¢ — sina sin B cos ¢ cos O (10)
0
p Lpq + Lgr LCi(a, B)qSb + 1,C, (a, B)qSb
q = 1517” - 16(172 - r2) + 17Cm(a)qS6
r —hqr+ Iypq L,Cy(a, B)GSh + I,C, (a0, B)GSD
Vs LGy, ()b + 1,C,, ()b 0 LC, ()b + I,C,, (a)b p
—+ pT 0 17Cmq (Ot)C_ 0 q
LCy, ()b + IsC,, , ()] 0 L,C ()b + I,C,, (a)b r
0 LGy, (o, B)b + 1,C,, (@, B Gy, (a, B)b + 1,Cyy (a, B)b 3.
+4S | I;Cp,, (@) 0 0 8a (11
0 LGy, (a, )b+ ICyy (o, BYb  1,Cyy (a, B)D + I,C,y (e, B)b 3,
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=

6 _ 0 cos ¢ —sing (12)
| |0 sing/cos® cose/cosd 1

Let us define the states x|, x, € R*, x; € R?, and the control inputs
u € R3asfollows: x; =[a, B, ¢17, x2=1[p, q, r1",x3=1[6, v,
andu =18, 8,,8,]". With the choices of x, x,, x3, and u, the flight
dynamic Egs. (10-12) can be rearranged as

X = file, B) + g1, B, ¢, 0)x2 + g1, (a0, B)x2

+l’l1(0€, ﬂ)u+flg(a7 ﬂ? ¢76) (13)
x2=f2(a7ﬂ7 p»qﬂ’)'}'fZH(a»ﬂ)x2+g2(a»ﬂ)” (14)
X3 = f3(¢, 0)x, (15)

where f, g, and h represent the terms of Egs. (10-12) in order. The
preceding equations are mainly used for the controller design and
stability analysis processes of the following sections.

III. Controller Design and Stability Analysis

When designing a flight control system with the two-timescale
assumption, the inner-loop controlleris designed to control the fast
states x, using the control input u, where the desired values of the
fast states x§ are given by the outer loop. In the outer loop, the
controller is designed to control the slow states x; using the fast
states x, as control inputs. The inner-loop controller neglects the
transient responses of the fast states x,. It assumes that the fast
states track their commanded values instantaneously and that the
control surface deflection has no effect on the outer-loop dynamics.
The structure of the two-timescale controlleris shown in Fig. 1. In
each feedback loop, control laws x¢ and u are designed separately.

In this paper, the backstepping method is used to design a
controller’ The backstepping design procedure can be viewed as
the two-timescale approach because the fast states x, are used as
control inputs for the slow states x; intermediately. However, this
methodologyconsidersthe transientresponsesof the fast states and,
therefore,does not require the timescale separationassumption. The
following assumptionsare usedin the design and analysisprocesses.

Assumption 1: The desired trajectories x¢ =[a?, B¢, ¢?]" are
bounded as

i 5] < e (16)

where ¢; € R is a known positive constant and || - || denotes the
2-norm of a vector or a matrix.

Assumption 2: The total velocity and the dynamic pressure are
constant.

V =0, G=0 (17)

Assumption 3: There exist positive constantsw,, and §,, € R such
that the magnitudes and derivatives of fi, f2, f2,, &1,, and g, are
bounded for all ¢ and 8 € R satisfying |«| < «,, and |B| < B,,..

Assumption 4: The magnitude of 6 is bounded as

0] <6, <7/2 (18)

where 6,, € R is a positive constant.
The following lemmais used in the design and analysis processes.
Lemma 1: There exist positive constants«,,, B,,, and6,, € R such
that g, («, B, ¢, ) is invertiblefor all ¢ € R and all«, B, and 6 € R
satisfying |C{| = O, |ﬂ| = ﬂma and |6| = gnr

z¢ —iﬁ-_

Lemma 1 can be proved by a sufficient condition that the set of
rows of g; is linearly independent.
According to Assumption 3 and Lemma 1, the size of gl_1 and

&1, is bounded by some positive constants ¢, , ot
¢ 1
[s1@.B.g.6)7"| <c (19)
e p] = e, (20)

Assumption 5: The following inequalities are satisfied for con-
stants ¢, and €t in Egs. (19) and (20):
@ 1

C, C <1 2D

814 G !
Note that g, is composed of the aerodynamic coefficient terms
related to the angular rate and multiplied by a very small quantity
p/m, and therefore, the magnitude of g;, is very small. Also note
that the norm of ¢, -1 is mainly influenced by the pitch angle 6,
and therefore Assuniption 5 is closely related to the maximum pitch
angle in Lemma 1. For the aerodynamic model considered in this
study, the numerical value of c,, c, -1 is less than 0.13.

Assumption 6. There exist positivle constantsw,, and §,, € R such
that g,(«, B) is invertible for all @ and B € R satistying |a| < «,,
and |8 < By

Assumption 7: The control surface deflection has no effects on
the aerodynamic force component:

hi(a, ) =0 (22)

Note that g, in Eq. (14) represents the input matrix of the control u
to the dynamics of the angularrates p, g, and r. Also, #, in Eq. (13)
represents the aerodynamic force component caused by the control
surface deflection. Because the control surfaces of the aircraft are
designedto controleach axes’ angularrate of aircraftindependently,
the inputmatrix g, is invertible for all cases, and the magnitude of /1,
is very small compared to other aerodynamic terms in the dynamic
equation. Therefore, it can be assumed that g, is invertible, and
hy = 0. Numerical studies for the aerodynamic model consideredin
this study also show that g, is always invertible, and the size of &,
is negligible.

Letusintroducethe errorstate variablesz; and z, € R? asfollows:

7 =x; — xf (23)

=Xy — xg (24)

where x{ and x¢ are the desiredtrajectoriesof x; and x,, respectively.

Note that x{ is given by command signals and x¢ will be defined

lat%r.sing Eqgs. (13) and (14), and Assumption 7, the dynamic equa-
tions of the error states are given as follows:

2y =551—x{i=f1+g1x2+glf,x2+f1g—xf (25)

2 =5Cz—5c;1=fz+szXz+gzu—fc§ (26)

Theorem 1: Consider the system in Egs. (25) and (26), where the

control input u is defined in Eq. (27). Then, the solutions of the
system are locally uniformly ultimately bounded:

u=g, [~k — gl 71— gl — A] 27

where x§ and A € R3* ! are defined in Eqs. (28) and (29) and k; and
ky € R are positive design parameters:

xg:gfl[—klzl —fl—flg'f‘fff] (28)

Outer loop ol &
Controller | z¢ g

Flight
Dynamics

Inner loop
Controller | *

— 21, T2

Fig.1 Structure of the two-timescale controller.
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d

0x3
A=+ fox— aT[fl + 81X + g1, %2 + flg]
1

axd 7
——=fix

0x; M.
Furthermore, the bound of the tracking error may be kept as small
as desired by adjusting the design parameters.

Proof: By Assumptions 1 and 3, the following inequalities are
satisfied for certain positive constants ¢, , ¢y, , and ¢;a:
1

= gi [kt + #/] (29)

I fiter, BN < ¢, (30)
| ot 0.0 <y, 31)
4] < e (32)

The bound of ||xg || can be computed using Egs. (19), (30), (31), and
(32) as

[t = o [kl 4+ e, + e, + ] (33)
Let us consider the Lyapunov function candidate,
Vi=1zlz+1dz (34)

The derivative of the Lyapunov function V; along the trajectories of
Eqgs. (25) and (26) is given by

- avy . avy .
V] = —2 + —2 (35)
821 322

Substitution of Egs. (25) and (28) into Eq. (35) yields the following
equation:

. Vi Vi
Vi = [ kyz, +glnx2]+—g1[
= —k |z > + Z]Tgla‘xz + Znglzz + Zszz

= —kilzll* + nglnx;i + Znglnzz + ZngIZZ + Zszz (36)
Substituting Egs. (26) and (29) into Eq. (36) yields

Vi=—killz® + 2/ g1,%5 + 21 8,22+ 2 @122 + 25 |:f2 + fo X2

ax{ axd axgd ,  oxf .,
Sy -y, e 37
+ gou - lxl ax3x ax;ixl ax;fxl (37)

Vi=—killzl* + 2] g1, x5 + 2] 81,22 + 2] 8122 + 25 [A + gou]

=kl +zlg,xd + 22 (el 21+ gl 2 + A+ gou]
(38)

Because f; in Eq. (28) is dependenton V, the term —z} (3x§ /0 Vv
must be included in Eq. (37); however, it is neglected by using
Assumption 2 in this study. Substituting Eq. (27) into Eq. (38) and
using Eqgs. (20) and (33) give the following equations:

Vi=—klz ||2 - k2||22||2 + Z{glnxgi < —kilz ||2 - k2||22||2

gz ] < =k (1 = co, e )zl + oy, 0001 (e

e, + ezl = bl = —k 1 = epllz P + ezl

k k
—kollzo ) = —j(l —elzl? - j(l - co[nzl I

165 2 22
_ + 15 —k 2
(1 — cl)} oy lel

2
)

2
k 2 1
Mool + 5 s

k
< —3%1 — ezl - (39)

cc?

Vi < =2V, + —2— 40
1= M1V 2% —c) (40)
where the constants ¢y, ¢;, and @, are defined as follows:

€1 =g, ot

i = min[(k; /2)(1 —

G =cptcy < + Cid
1), k] (41

Note that p; is positive because c; is less than 1 by Assumption 5.

Equation (40) implies that V, <Owhen V, > e /4 k(1 — e

Therefore, the error states z; and z, are bounded and converge
exponentially to the residual set D :

i l1? + llz2 1% < 2 -
Because ¢; and ¢, do not depend on k; and &, the size of the set D,
can be made arbitrarily small by adjusting the design parameters k;
and k,.

Theorem 1 represents the design procedure of the controller to
track the «, 8, and ¢ commands, and also shows that the tracking
error of the control system converges to a compact set whose size is
adjustable by the design parameters. Because the timescale separa-
tion assumptionis not used in this study, it is not necessary to make
the control gain large to guarantee closed-loop stability.

D, = {zl,zl eR?

} (42)

IV. Neural Networks Adaptive Controller Design

In the preceding section, the backstepping controlleris designed
with the assumption that the aerodynamic characteristics are fully
known. Because aerodynamic coefficients are highly nonlinear and
dependent on lots of physical variables, it is very difficult to iden-
tify them exactly. The difference between the mathematical model
and the real system may cause performance degradation. To over-
come this drawback, multilayer neural networks are used in this
study. The weights of the neural networks are adjusted to compen-
sate for the effect of the modeling error. The adaptive controller
based on multilayer neural networks is an extension of the work
describedin Ref. 6. In this paper, it is generalized such that the vari-
ables that do not belong to the states can be used as neural networks’
inputs.

A. Effect of Modeling Error
In this paper, the modeling error in the body-fixed angular rates
dynamics is considereq. Tk}e identified values of f>, f5,, and g, in
Eq.(14)are defined as f>, f,,,and §,, respectively.Then, the control
inputis expressed as follows:
i=8" [~k — gl 71— gl — A] (43)
d

~ N N 0x3
A= fri+ fr,%— N [fl + 81X + 81, %2 + flg]
1

Bx
- _f3xz

0x3
Substituting Egs. (43) and (44) into Eq. (38) gives

gy [k + & ] (44)

Vi=—kllzl? + 2l gi,xf + 25 [gl 21 + 8Tz + A+ g

+gou — gou] =~k |zl = kallzall® + 2] g1,x5

A
= —killzil?

where A; = g,[u — it] represents the term caused by the modeling
error, that is, the modeling error of f,, f,,, and g, adds the term
zl A to the derivative of the Lyapunov function.

+ 25 galit — ul — ka2l + 2] g1, x5 — 25 A

B. Neural Networks Structure
Given an input x? € RM, the three-layer neural networks as
shown in Fig. 2 has an output y,, € R" as

N2 Ny
Ymn; = Z |:w[jcr<z v,kxnnk +6uj) +6wz:| N i = 1, 2, ey N3

j=1 k=1
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1

<]
xnnl ynnl

o

nny ynng

Ynn Ng

o
nn Ny

Fig.2 Structure of three-layer neural networks.

where v j; is the weight connectingthe firstlayer to the second layer,
w;; is the weight connecting the second layer to the third layer, 6 is
abias,and &, is the number of neurons in the ith layer. The sigmoid
activation function o (-) is defined by

o) =1/1+e) (46)

The neural networks input-output mapping equation (45) can be
expressed in matrix form as follows:

Yon = W o (VTx,,) (47)

where
WeRNHIxN: -y e RMAIxN2 -y e RNMF1 and R
RN2+1 are defined as follows:

le wyp W oo 9u1 Vip VU2 -
WT = | 0w, Wa Wy - , vl =16, v vn -
T
0 0 0
Xon = [1, Xony s xnnz,...,xnan:I

o) =1, 0z, 0G)....a(zm)]"

Multilayer neural networks can approximate a nonlinear func-
tion to any desired accuracy. This is known as the universal
approximation capability.>!* That is, for a continuous function
A:RN'+> RY and an arbitrary constant €y > 0, there exist an
integer N,, the number of neurons in the hidden layer, and
ideal constant weight matrices W € R¥2+1xM and vV e RM +1xM
such that

A=Wo(Vixy)+e@nm) (48)

where € (x,,,) is the approximationerror satisfying ||€ (x,,) || < €y for
all x,, in some input space.

The following assumptions are used in the design and analysis of
the adaptive control law presented in this paper.

Assumption 8: Here, xﬂn = [xf, X1, X,]7 is defined as the input
vector of the neural networks, and this input satisfies Eq. (48) for
some €.

Assumption 9: The ideal weights are bounded in the sense that

Wil <= Wy,

IVIiF < Vu (49)

where Wy, and V), € R are known positive constants and | - || ¢
denotes the Frobenious norm of a matrix.

The ideal weight matrices W and V satisfying Eq. (48) cannot
be determined in anticipation because we have no information on
tl}e error term A. Instead, the estimated values of the ideal weights,
W and V, are used in the controller, and they are adjusted by the
adaptive laws. Consequently, there exists an effect caused by the
difference between the ideal weights W and V, and the estimated
weights W and V. This effect s stated in the following lemma._

Lemma_2: Let us define the weight estimation errors as W =
W—-W, V=V -V, and Z =diag[W, V]. Given a neural net-
works’ input x,,, the output error is expressed as

WTU(VTxm) - A= —WT[O'(VTJC“") - U’(VTxnn)VTxnn]

— WTU‘/(&TJC"“) VX0 + w (50)

where

oA do
cr(Z)=d—Z

and w € R is defined as
w(t) = ~W'o' (Vikw) Vi — W O(VIxp) — €(xm) (5D

Furthermore, ||w]| satisfies the following inequality for some
positive constants C;, i =1, 2, 3, 4:

lwll < €y + Gl Zllr + G ZIplxill + Call Zllpllxall - (52)

Proof: The output error of the hidden layer for the input x,, is
defined as

G=0c—0= O'(VTx,m) —0'(‘7Tx,m) (53)
The Taylor series expansion of o in Eq. (53) may be written as

Vi +O(V xm) (54)

=VTxm

T _ 5T d_o-
O'(V xnn)—a(V xnn)+ =

By the use of Egs. (53) and (54), the hidden layer output error
equation can be written as follows:

& =0 (V%) V' + O(V7x1n) (55)
Then, the error of the output layer is expressed as follows:
WTU(VTxnn) —A= WTO'(VTxm,) - WTO'(VTx,m) — (X))
= —WTO'(VTxm) - WT[O'(VTx,m) - 0'(‘7Txnn)] —e(Xy)
(56)

SubstitutingEq. (55)and W = W + W and V = V — V into Eq. (56)
yields

W7o (V7 xnn) — Az W0 (V ) — W7o (V7 x0n) Vo
WG (0T Ve — WTO(V7x0)
—€(Xm)
= W[ (V) — 0 (Vo) V]

— WTU’(VTxm) Vi +w (57)

Therefore, Eq. (50) has been proved.

When the sigmoid function o (-) and its derivative do (z) /dz are
bounded by some constants and Assumption 8 is used, it can be
shown that the high-orderterm O in Eq. (54) satisfies the following
inequality:

|

|O(V7 %)
<ctct+clVielenl

| < lo(V7x)

|+ o (V7x)

+ ||U’(‘7Txnn) Vix,,

< ctellVIg+ellx VI + el VI (58)

where ¢ is a generic symbol used to denote any finite constant. Note
that the property of ||[Ax| < ||Allr|lx|l is used in the preceding
equations.

Finally, Eq. (52) is proved by using Egs. (51) and (58) and hbox-
Assumption 8 as follows:

lw®) | < IWlreVi(e + cllxi |l + cllxall) + Wi (e + el VIIr
+elx Ve + eV + ey < C+ Gl Zl
+ G ZIlp x|+ CllZ e Nl | (59)

O

This lemma shows that the neural networks output error caused by
the weight estimation error can be expressed as Eq. (50) and that
the size of the term w in Eq. (50) is bounded by Eq. (52).
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C. Design of the Adaptive Controller

The followinglemma defines arobustterm v and shows a property
for the stability analysis.

Lemma 3: Consider w € R? defined as in Eq. (51) and v € R?, &,
and k, € R defined as

226
=—— 60
llz211& + éé (60
£ =k (Zy + 1ZII)Ax1 | + 211 (61)
k, > max{Cs, C4} (62)

where € is a positive constant. Then, the following inequality is
satisfied:

2w +v) < 20[C + ClIZIIF) + € (63)

Proof: With the choice of v in Eq. (60), zJ (w + v) is expressed

as
(Ilz21l€)?
T T
ZwHv)=zw— ——— (64)
: : 22115 + €
Substituting Eq. (52) into the preceding equation gives
23 W +v) < 20[C + Col Zllr + CllZ] £l
~ (Ilz211)*
+Coll Z||pllx2]] — ———— 65
A1 Z1 pllx2l] IIE +< (65)

Furthermore, from the definition 7=7—Z7and Eqgs. (61) and (62),
we have

G ZI il + Call Z el ll < kNI Z = Zle (Dl + llxall) < &

(66)
When Egs. (65) and (66) are used, Eq. (63) can be proved as follows:

(llz2118)?

IalE + € = [lz2 I[C,
2

2w +v) < 2lC +CIZIr +&] -

. llz2 1€ .
+ Gl ZIIp) + ———¢ < |l[C, + GlIZ|ls1+e (67

le2llg + ¢ -

The design processof the adaptivecontrollerand stability analysis
are stated in the following theorem.

Theorem 2: Consider the system Eqgs. (25) and (26), where the
controlinputu isdefinedin Eq. (68) andthe adaptivelaws are defined
in Egs. (69) and (70). Then, the trajectories of the system as well
as the neural networks’ weights are locally uniformly ultimately
bounded:

u=3"~kw—glzi—glz— A+ Wo(Vixwm) +v (68)

wherg A and v are defined as in Eqgs. (44) and (60), respectively. W
and V are computed by the following adaptive laws:

W=y, [0(VTxm) 2} = ' (VT x00) Vw2l | — 6y W (69)
‘;} = ~YvXm I:U/("}Txnn)TWZZ:IT - K]/u"} (70)

where «, y,,, and y, € R are some positive design parameters. Fur-
thermore, the bound of the tracking error and the neural networks pa-
rameterestimationerror may be kept as small as desiredby adjusting
the design parameters.

Proof: Let us consider the Lyapunov function candidate,

Vo= 1oz + Ll + (1/29) w (WT W1+ (1/2p) e [VI V]
(71)

When Eq. (38) is used the derivative of the Lyapunov function V,
along the trajectories of Egs. (25) and (26) with the adaptive laws,
Eqgs. (69) and (70), are computed as

Vo= —killall’ + 2 g1, + 3 [¢f,21 + 8] 21 + A+ gou + gou”

— g+ (1/7,) tr (W W1+ (1/y,) tr [VT V] (72)

where u* is the ideal control input when the exact aerodynamic
model is available and is expressed as follows:

u* = g;l[—kﬂZ —gla—g —A] + WTO-(VTx,m) +v (73)
With the definition of u* in Eq. (73), Eq. (72) becomes
Vo= —kilzi I = kallzal + 2 g1, — 23 Ay + LW o (V)

+2lv 4 (1) tr (WO W+ (1) tr [VT V] (74)

where A, is defined as g,[u* — u] and represents the term caused
by the modeling error. Substituting Eqs.(50), (69), and (70) into the
preceding equation gives the following equation.

Vo = —killzI? = kallza? + 2] g1,68 + 23 {— W [o(V7 x0m)
—U’(&Txnn)&Txnn] — WTU’(&Txnn)\N/Txnn +w+ v}
+tr{WT[0'(\7Txnn)zzT —U’(&Txnn)ﬁTxnnzzT +KW]}

+tr(\~/T{xnn[cr’(&Txnn)Tsz]T +K\7}) (75)
When the property of the trace, tr[yx”] = xT y, is used, the preceding
equation is simplified as follows:

Vs = —killzill = kallzaI? + 20 g1,%8 + k w[Z7 Z] + 25 (w + v)
(76)

Using the property [ ZT 21 =t[ZT Z1—w[ZTZ) < \Z|pZu —
[ Z||3, and Egs. (39) and (63), we have

cicl
1

V, < —ﬁ(l —ce)lzll? — kllzl® + ———
- 2 2k1( —Cl)

+ k[ ZrZu

- ~ k
—IZI3] + lz2lC) + Call ZI ] + € = —31(1 —enllzl?

2
k2 2 kz C] K = K Id 2
——|lz — —=\llz| = —| ——=|Z — =[Z — 7
> 1zl = =iz T 21 = Z1Zlr = Zul

POzl + 92— Sy (g
S o B Rt B R it V)

el T ey 2k 2

With the definition Cs = [cic3/2k (1 — ¢)] + (C}/2ky) +

(Z2%,/2) + €, the preceding equation becomes

. k k ~ K~
V, < —3%1 —c1>||z1||2—32||z2||2+cz||z2||||znp — 31215

k k Kz
+Cs === ellal’ = Flal’ - 71215

=] | 2 G|l
z -5 & z
__[j} 2 [f}ucs (78)
211ZlF —c, = 121l
2
If k, and « are chosen to satisfy k,x — 4C§ > 0, the last matrix
in the preceding equation becomes positive definite. Therefore, the
following inequality is satisfied:
Vy < —(ki/2)(1 = e) izl = (ke/Dllz2l? = (/DI ZI + Cs
(79)
For a positive constant ., satisfying 0 < p, < min{(k; /2)(1 —¢y),

ky/4, k /4 min{y,, y,}}, finally, the following equation is obtained
for the derivative of the chosen Lyapunov candidate function:



LEE AND KIM 681

Vo < =21, Vo + Cs (80)

Equation (80) implies that V, < 0 when Vs, > Cs /2u>. Hence, the
error states z; and z, and the weight estimation error Z are bounded
and converge exponentially to the residual set D;:

Dy ={z1,20 € R}, Zp € RM AN +2x N2t Ma |17 )12 4 |2

+ (1/max{yu, pDIZI3 < Cs/ua}

Because ¢y, ¢3, Cy, Zy, and € are independentof k; and k,, the size
of the set D, can be made arbitrarily small by adjusting the design
parameters k; and k,. O

Theorem 2 represents the design procedure of the adaptive con-
troller to track the «, B, and ¢ commands when the modeling errors
exist. This shows that, if the controlleris applied, the trackingerrors
and the parameter estimation error of the neural networks converge
to a compact set and also shows that the size of the set is adjustable
by tuning the design parameters.

The universal approximation theorem only guarantees the exis-
tence of the ideal weight and the ideal number of the hidden layer
neurons. In this paper, the weight of neural networks are adjusted
by the adaptive laws; however, the size of hidden layer neuron N,
is fixed. It also affects the approximation capacity of the neural net-
works. If too small a value of N, is chosen, the neural networks may
not compensate for the effect of the modeling error properly. There-
fore, the value of N, should be chosen carefully in considerationof
the complexity and the size of the modeling error.

V. Numerical Simulation

In Sec. III, the design methodology of the flight controller to
track the «, f, and ¢ commands is proposed when full knowledge
of the aerodynamic characteristics is available, and in Sec. IV, the
adaptive controller based on neural networks is designed to elim-
inate the effect caused by the aerodynamic modeling error. This
section presents numerical simulation results for each controller
to demonstrate the performance of the proposed nonlinear control
laws.
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The F-16 aircraft model is used in this paper,!! and the following
command valuesof «, 8, and ¢ are applied to the aircraftin a steady-
state level flight of V =500 ft/s, h = 10,000 ft:

0y =2.659,  B,=0, ¢,=0deg, 0<t<TI1s
ag=10,  Bs=0,  ¢s=>50deg, 1<1<10s
ag=—2,  Pa=0, s=0deg, 10<1<20s

To obtain differentiable commands satisfying Assumption 1, the
third-order linear command filter is used. The aerodynamic mod-
eling error is made arbitrarily, and the average error for each co-
efficient is listed in Table 1. The controller design parameters are
chosen as follows: k;, =3, k, =8, k=0.2, k, =0.153, ¢ =0.001,
Zy =0.6142, and y,, =y, =30.

Figure 3 represents the simulation results of the backstepping
controller described in Sec. III when the exact aerodynamic model
is available. The solid line represents the simulation result of the
backsteppingcontroller proposedin Sec. 11, and the dotted line rep-
resents the command signal. As expected, the proposed backstep-
ping controller makes the «, B, and ¢ follow the command values
in a satisfactory way. Figure 4 shows the simulation results when
the modeling error exists. The solid lines represent the simulation
resultof the adaptivecontrollerbased on neural networks in Sec. IV,
and the dashed lines representthe result of the controllerin Sec. III.
The dotted lines represent the command signals. It is shown that the
system output of the adaptive controller tracks the command quite
well, even if large modeling uncertainty exists. It can be said that the
performance of the system is not degraded in the case of the neural
networks adaptive controller.

Table 1 Average modeling errors of the aerodynamic coefficients, %

Coefficients Error Coefficients Error Coefficients Error

o 79.6 Cn 207 Cu 180.1
c, 16.0 Cn, 77.6 Cn, 86.7
a, 148.9 Ciny, 146.2 Cu, 94.9
Cis, 141.8 — — Cu, 483
Ci, 69.8 — — Cus, 2285
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Fig.3 Time response of x; and u (without modeling error): backstepping controller in Sec. Il ——, and command - - - -
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Fig.4 Time response of x; and u (with modeling error): adaptive controller in Sec. IV ——, backstepping controller in Sec. III - - - -, and command

VI. Conclusions

A controllerfor a six-degree-of-freedan nonlinear flight model is
proposed,andits stabilityis analyzed by using the Lyapunov theory.
The backstepping controller is used to track the «, B, and ¢ com-
mands with the assumption that the aerodynamic characteristicsare
fully understood. It is shown that, if the controller is applied, the
tracking error exponentially convergesto a compact set and the size
of the set can be made arbitrarily small by tuning the design parame-
ters. It is not necessary to make the controller gain excessively large
to guarantee stability because the timescale separation assumption
is not used.

An adaptive controller based on neural networks is used to com-
pensate for the effects of the aerodynamic modeling errors. The
neural networks’ parameters are adjusted to offset the error term.
The closed-loop stability of the error states and the parameters of
the neural networks are examined by the Lyapunov theory, and it
is shown that the error states and the parameter estimation errors
exponentially converge to a compact set whose size is adjustable
by the design parameters. Finally, a nonlinear simulation of an air-
craft maneuver is performed to demonstrate the performance of the
proposed control laws.
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